a2 United States Patent

Xu et al.

US009177412B2

10) Patent No.: US 9,177,412 B2
(45) Date of Patent: Nov. 3, 2015

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

TECHNIQUES FOR MULTIPLE PASS
RENDERING

Inventors: Xianchao Xu, Beijing (CN); Lili Gong,

Beijing (CN)

Assignee: INTEL CORPORATION, Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 112 days.

Appl. No.: 13/976,449
PCT Filed: Dec. 14,2011

PCT No.: PCT/US2011/064933

§371 (D),
(2), (4) Date: Jun. 26,2013

PCT Pub. No.: WO02013/089706
PCT Pub. Date: Jun. 20, 2013

Prior Publication Data

US 2013/0286009 A1l Oct. 31, 2013

Int. Cl1.

GO6T 15/00 (2011.01)

G09G 5/02 (2006.01)

G09G 5/36 (2006.01)

U.S. CL

CPC ... GO6T 15/00 (2013.01); GO6T 15/005

(2013.01); GO9G 5/026 (2013.01); GOIG 5/363
(2013.01); GO9G 2340/12 (2013.01); GOIG
2370/10 (2013.01)

Graphics dpplication Prosramming

Interfuce 620

Raceive a comimand te open the application

(58) Field of Classification Search
CPC .. GO6T 15/005; GO9G 2370/10; GO9G 5/363;
GO09G 2340/12
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,483,505 Bl 112002 Morein et al.

6,731,289 B1* 5/2004 Peercyetal. 345/503
6,750,869 Bl 6/2004 Dawson
6,839,058 B1* 12005 Ashton ... 345/421

6,933,941 Bl 8/2005 Peercy et al.
7,170,513 Bl 1/2007 Voorhies et al.
2002/0158865 Al* 10/2002 Dyeetal. ...ccoovveenrnnnne. 345/419

OTHER PUBLICATIONS

Everitt C.: Interactive Order-Independent Transparency. Tech. rep.,
NVIDIA Corporation . Available at http://developer.nvidia.com/ob-
ject/Interactive_ Order Transparency.html, May 2001.*
International Search Report and Written Opinion mailed Sep. 27,
2012 for corresponding PCT/US2011/064933 filed Dec. 14, 2011
(nine (9) pages).

* cited by examiner

Primary Examiner — Stephen R Koziol

Assistant Examiner — Robert Craddock

(74) Attorney, Agent, or Firm — Kacvinsky Daisak Bluni
PLLC

(57) ABSTRACT

Techniques for multiple pass rendering include receiving ver-
tex data for one or more objects to be enhanced. Parameters in
a display list may be determined using the vertex data. Mul-
tiple pixel rendering passes may be run using the parameters
in the display list. An enhanced depiction of the one or more
objects may be rendered based on the multiple pixel rendering
passes. Other embodiments are described and claimed.

28 Claims, 9 Drawing Sheets

Graphics Driver 614

!
.| Generaic command butfers and stoie pointees for a pixel phase

625

X

530

X

633

¥
Setup pointers to buifers

f f -
S Begin 2 vertex phase to deterniine a display list
o 640

A 4

Begin a vertex phase] .

1 Replree pointers within the command buiters o the display list

A3t

¥

Begin a pixel phase
655

Ron a pixel pass
560

h,

Display render vesult

(Generate the scene using results from previous passes \;
675 ;

[2 580

US 9,177,412 B2

Sheet 1 of 9

Nov. 3, 2015

U.S. Patent

0¢1
mding)

["OI4

\

Pl
asViY] X1

!
2SDYJ X742 4

1zl
AIALLT SO1YdD.AD)

811
aopfaapu] Suniuuv.i3odq uoypoyddy somydp.o

ocI

HonDOIdd} SULIopudy Ssvg ANy

00T WoISA§

01l
mduy

U.S. Patent Nov. 3, 2015 Sheet 2 of 9 US 9,177,412 B2

20

4 ™

RECEIVE VERTEX DATA FOR ONE OR MORE OBJECTS TO BE
ENHANCED, THE VERTEX DATA RECEIVED BY 4 FIRST
PHASE OF A THREE DIMENSIONAL PIPELINE

DETERMINE A DISPLAY LIST USING THE VERTEX DATA
DURING A SINGLE RUN OF THE FIRST PHASE
204

/

RUN MULTIPLE SECOND PHASE PIXEL RENDERING PASSES
USING THE DISPLAY LIST

kN S

/ ~

RENDER AN ENHANCED DEPICTION OF THE ONE OR MORE
QBJECTS BASED ON THE MULTIPLE SECOND PHASE PIXEL
RENDERING PASSES

FiG. 2

US 9,177,412 B2

Sheet 3 of 9

Nov. 3, 2015

U.S. Patent

£ DA

5129
Jajng
sepusypdaq 01 Bng

i

S

ore
fBng
JARBYG [EXId O} JB3HO

gee
0ee
BIR(] @ARIULY

gze

SIBRNG PUBLLIIOD

Sle

161 Aeydsig

e B /\\x
9z& L M 0Le : L zee
; 98Bl 19%id : Lo dsaugsoydensy N DGR XKBUDA

T BUIssestid soydrin

00&

U.S. Patent Nov. 3, 2015 Sheet 4 of 9 US 9,177,412 B2

1% Layer
405

2" Layer
410

3" Layer
415

FiG. 4

US 9,177,412 B2

Sheet 5 of 9

Nov. 3, 2015

U.S. Patent

1Y

048

Gog

054

Ges

syng sepusy/yidsg
nding

SvS

0es
IBLNG Jopeys |9xid

B8R0

08% OvG
08¢ Ovs
814
1 TAY 474
1Byng aimxay Ble(] SARRULL
Jnduy ndu

Gis
uny ¢

01g
uny 2

G0%
U 1

US 9,177,412 B2

Sheet 6 of 9

Nov. 3, 2015

U.S. Patent

089
N8 Iapust Avjdsiy

9 DiAd

7]

SLY
assed snotAdxd woy s3nsol SUIsn oU20s Ay ArRIAUSL)
S/

sssed 1sey

r

oseyd 1ox1d 2 10} sisyuiod o103s pUR SI0IIn LBUILIOS 2)8I0UdL
! ! 3 3

\

099
ssed pxid v awy

£ /
059

1S1] AjUSEP 90} W7 £I0JI g PURIKICS 211 URpLa stojutod aoepdey
4
09

181] ABTdSIp & oURuINSp o3 eseyd xaura v wdoyg

A
p :
089

§1G 4941 SHTgapiny

e aN
589
osuyd 1oxid 2 nidog
4
S¥o
sxepng o) saquind dysg
&
geo
ssuyd xoMes v aydeyg
&
£09
uoneai[dde ay3 usdo 0) PUBULIOD B 351003y

US 9,177,412 B2

Sheet 7 of 9

Nov. 3, 2015

U.S. Patent

(&L
301437

ZiL
sypusig

L DIA

0§, Avpdsiq

O/ 1uuoduio
SUOHDIIUNINIO)

€/ uauodiuio’y
SUISSAD04,]

00] w1845

077 33IA3¢] Supndign’y

00, WJISAG pozijpiiiia)

gL oipepyy

YA
sypuSig

/]
e
s

y
s

01L
22143(F

U.S. Patent Nov. 3, 2015 Sheet 8 of 9 US 9,177,412 B2
862
PROCESSING | 8014 !\ OPERATING SYSTEM |
UNIT : e s T
P oo oo e £L025
808 806 { | APPLICATIONS |
SYSTEM v 834
MEMORY /;Sf//ﬁ UTTTMODULES)
s mmmmmmmmmmmmmmm
836
| | VOLATILE |4 ; e 20220
o DATA i
v DA
NON-VOL {7 i .,.,.,.,’ mmmmm
T ¥ - - ks
| INTERFACE (el s mn | ExzervaL HDD]
_____,_______,___,_...—/ - 81 6 A o mman o S
4
. FDD | L s18
INTERFACE |4 FYa
3 it 820 o844
A e 5;‘ 828 SETICE MONITOR
q_ﬂ 4 . A Eq'_‘_‘» DRII/E e 822 A /—- 838
- 848 DIk ¢ -
— KEYBOARD
™ aparror |* 840
? o
8 wmepwireLEsS) MOUSE
PR o 8§38 834 848
INTERFACE | ¥ MODEM |« B VAN ¥ REMOTE
) COMPUTER(S)
£ 836 - 852
| NETWORK | J i e 850
ADAPTOR (WIRED/WIRELESS) | loeed | R >
STORAGE

FiG. 8

US 9,177,412 B2

Sheet 9 of 9

Nov. 3, 2015

U.S. Patent

6 ‘DIA

(S)THOLS VIV YTAHAS (S)FYOILS VIV INATTD

906

0l6 806

HIOMANYV 4 A
NOILVIINIITIWNOD

(S)ATAYAS (S)INATTD

= 106 206~

o~
o~
=\

US 9,177,412 B2

1

TECHNIQUES FOR MULTIPLE PASS
RENDERING

BACKGROUND

Three dimensional technology plays a crucial role in the
graphics development domain. Three dimensional technol-
ogy is implemented in mobile devices such as smart phones,
tables and netbooks. The performance and power consump-
tion of the three dimensional technology on the mobile
devices is typically correlated to the user’s visual experience
and influences a product’s competitive advantage.

Many three dimensional games use special effects such as,
transparency, shadowing and/or adaptive textures/skins to
make the games more attractive to end users. However, the
applications running on current graphical processing units
require many passes through the entire three dimensional
pipeline on the same set of three dimensional objects in order
to create these special effects.

For example, to create a transparent effect, the application
has to do depth peeling first to get the frame buffer for each
depth layer and then blend the layers according to the depth
value. During the process of depth peeling, the application
must run through the three dimensional pipeline multiple
times on the same set of three dimensional objects in order to
obtain the data from the different layers. During each run
through the three dimensional pipeline, both the vertex phase
and the pixel phase of the three dimensional pipeline is com-
puted. However, during the runs, there is no change in the
vertex phase. As a result, the vertex phase computing in these
passes is duplicative and redundant. It is with respect to these
and other considerations that the present improvements have
been needed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a system for multiple
pass rendering.

FIG. 2 illustrates an embodiment of a logic flow for the
system of FIG. 1.

FIG. 3 illustrates an embodiment of a graphics processing
unit with a three dimensional pipeline.

FIG. 4 illustrates an embodiment of depth rendering on an
object during the pixel phase.

FIG. 5 illustrates an embodiment of the parameters used in
the pixel phase.

FIG. 6 illustrates an embodiment of the communication
between the multiple pass rendering application and the
graphics driver.

FIG. 7 illustrates an embodiment of a centralized system
for the system of FIG. 1.

FIG. 8 illustrates an embodiment of a computing architec-
ture.

FIG. 9 illustrates an embodiment of a communications
architecture.

DETAILED DESCRIPTION

Various embodiments are directed to multi-pass rendering.
In an embodiment, the multi-pass rendering may occur with-
out redundantly processing vertex data. In an embodiment,
vertex data for one or more objects to be enhanced may be
received. In an embodiment, parameters in a display list may
be determined using the vertex data. Multiple pixel rendering
passes may be run using the parameters in the display list. An
enhanced depiction of the one or more objects may be ren-
dered based on the multiple pixel rendering passes.

10

15

20

25

30

35

40

45

50

55

60

2

The rendering of three dimensional effects may be
improved by using the separate vertex phase and pixel phase
within the three dimensional pipeline. By running the vertex
phase a single time to create a display list and then reusing the
display list while running the pixel phase multiple times, a
three dimensional effect may be achieved with better perfor-
mance and less power consumption. As a result, the embodi-
ments can improve affordability, scalability, modularity,
extendibility, or interoperability for an operator, device or
network.

Reference is now made to the drawings, wherein like ref-
erence numerals are used to refer to like elements throughout.
In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding thereof. It may be evident, however,
that the novel embodiments can be practiced without these
specific details. In other instances, well known structures and
devices are shown in block diagram form in order to facilitate
a description thereof. The intention is to cover all modifica-
tions, equivalents, and alternatives falling within the spirit
and scope of the claimed subject matter.

FIG. 1 illustrates a block diagram for a system 100. In one
embodiment, the system 100 may comprise a computer-
implemented system 100 having one or more software appli-
cations and/or components. Although the system 100 shown
in FIG. 1 has a limited number of elements in a certain
topology, it may be appreciated that the system 100 may
include more or less elements in alternate topologies as
desired for a given implementation.

The system 100 may comprise the multiple pass rendering
application 120. In an embodiment, the multiple pass render-
ing application 120 may run on a graphical processing unit. In
an embodiment, the multiple pass rendering application 120
may run through a three dimensional pipeline in order to
create a three dimensional special effect. For example, a
multiple pass rendering application 120 may create special
effects such as, but not limited to, transparency, shadowing,
adaptive texture and/or adaptive skins.

In an embodiment, the system 100 may improve perfor-
mance of rendering three dimensional effects by having a
graphics application programming interface 118 and a graph-
ics driver 121 within the multiple pass rendering application
120.

In an embodiment, the graphics driver 121 may be a three
dimensional driver. The graphics driver 121 may work with a
graphics processing unit to process the three dimensional
pipeline into two separate phases. In an embodiment, the
three dimensional pipeline may include a vertex phase 122
and a pixel phase 124. In an embodiment, the graphics driver
121 may run a vertex phase 122. The vertex phase 122 may be
processed and an interrupt may be generated to the graphics
driver 121. The graphics driver 121 may store a result of the
vertex phase 122 in a display list. By storing the result in the
display list, the pixel phase 426 may later use the display list
for pixel processing.

In an embodiment, the graphics driver 121 may run the
pixel phase 124 multiple times through the three dimensional
pipeline in order to create a desired special effect. By sepa-
rating the vertex phase 122 from the pixel phase 124, the
vertex phase can be run a single time and the result stored. The
stored result may be used during the multiple passes of the
pixel phase by the pixel component 124. As a result, power is
saved as the vertex component 122 does not have to be rerun
each time the pixel component 124 is run in the three dimen-
sional pipeline.

In an embodiment, the vertex phase 122 may be operative
to receive vertex data based on one or more objects. In an

US 9,177,412 B2

3

embodiment, vertex data 110 may be input data 110 for the
multiple pass rendering application 120. In an embodiment,
the vertex data 110 may be data from one or more objects to
which a special effect may be applied. The vertex phase 122
may run the vertex data 110 from an object through the vertex
pipeline to process the data. The vertex phase 122 may deter-
mine primitive data. In an embodiment, primitive data may
include one or more of transforming, lighting, color and posi-
tion data.

In an embodiment, the vertex phase 122 may store the
primitive data in a display list. In an embodiment, the display
list may include multiple parameters. In an embodiment, the
parameters for the display list may include the primitive data
determined by the vertex phase using the vertex data. In an
embodiment, the parameters for the display list may include
pointers to command data buffers. For example, the param-
eters for the display list may include a pointer to a texture
buffer, a pointer to a pixel shader buffer and/or a pointer to a
depth/render buffer. In an embodiment, a depth/render buffer
may be two separate buffers with respective depth and render
information. In an embodiment, a depth buffer may include
depth information. The depth information may be used to
reflect an object’s distance. In an embodiment, a render buffer
may include a render result. In an embodiment, a render
buffer may be referred to as a frame buffer.

In an embodiment, after the vertex phase 122 is finished
processing, the graphics driver 121 may begin the pixel phase
124 using the parameters from the display list generated by
the vertex phase 122. In an embodiment, a pixel phase 124
may be independent from the vertex phase 122. In other
words, a pixel phase 124 may be run multiple times without
rerunning the vertex phase 122. In an embodiment, the pixel
phase 124 may be operative to run multiple pixel rendering
passes using the display list. In an embodiment, a pixel ren-
dering pass may be run for a first time to obtain a depth/render
or frame bufter for a closest depth layer. In an embodiment,
each pixel rendering pass may obtain a frame buffer from the
next closest depth layer. In an embodiment, a pixel rendering
pass may be run for a final time to obtain a frame buffer for a
farthest depth layer.

In an embodiment, after the pixel phase 124 runs multiple
pixel rendering passes and the furthest layer is reach by depth
peeling, the pixel phase 124 may render an enhanced depic-
tion of the one or more objects to be enhanced. In an embodi-
ment, an enhanced depiction of the one or more objects may
be the output 130 of the multiple pass rendering application
120. The output 130 may include the rendering of the one or
more objects with a special effect. For example, after the
depth peeling, the pixel phase 124 of the multiple pass ren-
dering application 120 may blend the depth/render or frame
buffer from the further layer to the closest layer to obtain a
transparency effect for the one or more objects.

Included herein is a set of flow charts representative of
exemplary methodologies for performing novel aspects of the
disclosed architecture. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein,
for example, in the form of a flow chart or flow diagram, are
shown and described as a series of acts, it is to be understood
and appreciated that the methodologies are not limited by the
order of acts, as some acts may, in accordance therewith,
occur in a different order and/or concurrently with other acts
from that shown and described herein. For example, those
skilled in the art will understand and appreciate that a meth-
odology could alternatively be represented as a series of inter-
related states or events, such as in a state diagram. Moreover,
not all acts illustrated in a methodology may be required for a
novel implementation.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates one embodiment of a logic flow 200. The
logic flow 200 may be representative of some or all of the
operations executed by one or more embodiments described
herein.

In the illustrated embodiment shown in FIG. 2, the logic
flow 200 may receive vertex data for one or more objects to be
enhanced at block 202. For example, the vertex data may be
received during a first phase of a three dimensional pipeline.
In an embodiment, the three dimensional pipeline may have
two phases. In an embodiment, the first phase may include a
vertex phase. The vertex phase may receive vertex data for
one or more objects to be enhanced. For example, a user may
want an object or a set of objects in a scene to appear trans-
parent. As aresult, vertex data associated with the object or set
of'objects in a scene may be received during the vertex phase
in the three dimensional pipeline.

The logic flow 200 may determine a display list using the
vertex data during a single run of the first phase at block 204.
For example, the vertex data may be processed during the
vertex phase. In an embodiment, the vertex data may be
processed and/or compiled to determine position, color and
other information regarding the vertex data. The embodi-
ments are not limited to this example.

In an embodiment, the vertex phase may create a display
list based on the processed vertex data. The display list may
include one or more parameters. In an embodiment, the dis-
play list parameters may include primitive data. In an embodi-
ment, the display list parameters may include command buff-
ers. Command buffers may include control buffers.
Command buffers may include pointers to various buffers
associated with the second or pixel phase. In an embodiment,
the pointers to the various buffers may be used in the pixel
phase. In an embodiment, command buffers may include, but
are not limited to, a pointer to a texture buffer, a pointer to a
pixel shader buffer and a pointer to a depth/render buffer.

In an embodiment, the command buffers set during the
vertex phase may be changed prior to the pixel phase. In an
embodiment, the command buffers set during the vertex
phase may be a default texture buffer, pixel shader buffer,
and/or depth/render buffer. In an embodiment, a user may
determine that a particular buffer should be used and the
parameter may be redefined so that the pointer may point to
that particular buffer. For example, if after the vertex phase
was run a user specifies a particular texture buffer, the par-
ticular texture buffer can be used for the pixel phase instead of
the default texture buffer to which the pointer pointed to on
the display list. In an embodiment, the display list may
replace the pointer to the default textual buffer with a pointer
to the texture buffer chosen by a user. As the vertex phase and
pixel phase are separated within the three dimensional pipe-
line, a user may choose one or more buffers after the vertex
phase was run, but before the pixel phase is run for a first time.

The logic flow 200 may run multiple second phase pixel
rendering passes using the display list at block 206. For
example, the pixel phase may be run multiple times in order to
achieve the desired special effect. Each time the pixel phase is
run, the display list may be used without having to rerun the
vertex phase. The pointers in the display list may be updated
so that the pixel phase may use the information from the
parameters in the display list without needing to rerun the
vertex phase.

For example, the pixel phase may be run multiple times
with each time removing a layer of depth from the object. The
pixel phase may continue to run until the pixel phase deter-
mines that the last layer of depth has been removed from the
image. The embodiments are not limited to this example.

US 9,177,412 B2

5

The logic flow 200 may render an enhanced depiction of
the one or more objects based on the multiple second phase
pixel rendering passes at block 208. For example, by running
the vertex phase a single time and using the display list
generated from the vertex phase to run the pixel phase mul-
tiple times, an enhanced depiction of one or more objects may
be rendered. In an embodiment, three dimensional special
effects may be rendered. For example, various textures may
be depicted on the one or more objects, the objects may be
shown as partially or completely transparent and/or the
objects may be shown with shadows. The embodiments are
not limited to this example.

For example, a building may be an object in a scene to be
enhanced. A user may want to make the building object
appear transparent. Vertex data may be determined for the
building object. The vertex data may be received by a graphi-
cal processing unit. The vertex data may be received during
the vertex phase of the three dimensional pipeline. The com-
piled and processed vertex data may be primitive data. During
a single run of the vertex phase, a display list may be deter-
mined. The display list may contain parameters, such as, but
not limited to primitive data and control buffers.

The graphics processing unit may determine whether to
run the pixel phase. The graphics driver may wait to run the
pixel phase until a command is received. In an embodiment,
a command from a user may be received to use a particular
buffer to process the primitive data. The graphics processing
unit may redefine and/or update the parameters in the display
list based on the particular bufter. For example, the graphics
processing unit may update one or more pointers in the com-
mand buffer so that a pointer points to the particular pixel
shader buffer chosen by a user. This allows the pixel shader
buffer specified by a user to be used in the pixel phase.

In an embodiment, multiple second phase pixel rendering
passes may be run. In an embodiment, a first pixel rendering
pass may remove a first layer from the building object. In an
embodiment, a second pixel rendering pass may remove a
second layer from the building object. Subsequent second
phase pixel rendering passes may be run until the last layer of
the building object is determined.

For example, an enhanced transparent image may be ren-
dered of the building object. When multiple pixel rendering
phases have been run on the building object, multiple depth/
render frame buffers may be determined for the multiple
depth peeling layers. In order to render a transparent object,
the graphics processing unit may blend the layers using the
frame buffers from furthest layer to closest layer according a
depth value. A transparent image of the building object may
be rendered. In an embodiment, the transparent building
object may be rendered on a display of a mobile device. The
embodiments are not limited to this example.

FIG. 3 illustrates an embodiment of a graphics processing
unit with a three dimensional pipeline 300. In an embodi-
ment, the graphics processing unit 402 may include a Pow-
erVR graphics processing unit. In an embodiment, the graph-
ics processing unit 301 with a three dimensional pipeline 300
may separate the three dimensional pipeline into a vertex
phase 322 and a pixel phase 326 as discussed with the mul-
tiple pass rendering application 122.

In an embodiment, the graphics processing unit 302 may
process the vertex phase 322 using a vertex pipeline. The
graphics processing unit 322 may process the vertex phase
322 and then generate an interrupt to the graphics driver 315.
The graphics driver 315 may run a vertex phase 322. The
graphics driver 315 may receive an interrupt to store a result
of the vertex phase 322 in an output buffer, such as, but not
limited to, the display list 315. By storing the result in the

30

40

45

6

display list 315, the pixel phase 326 may later use the display
list 315 for pixel processing. In an embodiment, the graphics
driver 315 may run the pixel phase 326.

In an embodiment, the display list 315 may include infor-
mation needed for pixel processing. In an embodiment, the
display list 315 may include one or more parameters. In an
embodiment, the parameters in a display list 315 may include
primitive data 330. In an embodiment, the primitive data 330
may include vertex data processed by the vertex phase 322.
As discussed above, primitive data 330 may include one or
more of transforming, lighting, color and position data.

In an embodiment, parameters in the display list 315 may
include command buffers. In an embodiment, the command
buffers 325 may include control stream information. In an
embodiment, the command buffers 325 may include pointers
to various buffers needed in the pixel phase 326 for pixel
processing. For example, the command buffers 325 may
include a pointer to texture buffers 335. The texture buffer
may include a texture image which may be rendered for one
or more objects in a scene. In an embodiment, texture coor-
dinate information may be vertex primary attribute data. In an
embodiment, texture coordinate information may be used to
determine how to map a texture image onto a three dimen-
sional object. The information in the texture buffer 335 and
the primitive data 330 may be inputs for processing during the
pixel phase 326.

In an embodiment, a pointer to the pixel shader butfer 340
may be included in the display list 315. The pixel shader
buffer 340 may include information for processing the inputs
during the pixel phase 326. In particular, the pixel shader
buffer 340 may include information for processing informa-
tion in the texture buffer 335 and primitive data 330. In an
embodiment, the pixel shader buffer 340 may include pro-
gramming code. In an embodiment, the code stored in the
pixel shader buffer 340 may be loaded by the graphical pro-
cessing unit 302 during the pixel phase 326.

In an embodiment, a pointer to the depth/render buffer 345
may be included in the display list 315. In an embodiment, a
depth/render buffer 345 may include two separate buffers
with respective depth and render information. In an embodi-
ment, a depth buffer may include depth information. The
depth information may be used to reflect an object’s distance.
In an embodiment, a render buffer may include a render
result. In an embodiment, the depth/render buffer 345 may
include the output information after the pixel shader buffer
340 processes the primitive data 330 and the texture buffer
335. In an embodiment, the depth/render buffer 345 may store
the pixels at each depth layer as the pixel phase 326 runs a
pixel pass removing a closest layer.

FIG. 4 illustrates an embodiment of depth rendering on an
object during the pixel phase. In an embodiment, pixel pro-
cessing may include depth peeling of layers of one or more
objects. For example, the objects to which the depth peeling
may be performed may be a circle with a line.

The objects may be run through the vertex phase to create
a display list with multiple parameters based on the circle
with a line objects. The circle and line objects may be run
through a first phase in the three dimensional pipeline. The
first phase may be a vertex phase. After the vertex phase is
complete, the circle and line objects may be ready for the
second phase in the three dimensional pipeline. The second
phase may be a pixel phase for pixel processing. The pixel
phase may include multiple runs of pixel rendering passes
using parameters from the display list.

For example, a first pixel rendering pass may obtain a
depth/render or frame buffer for a closest depth layer. As
shown in FIG. 4, the first layer (layer 0) 405 may include a

US 9,177,412 B2

7

first pass through the pixel phase. In a first depth peeling layer
405, the closest layer may be removed.

The multiple pass rendering application 120 may deter-
mine that there are more layers to the circle and line object. As
a result, the multiple pass rendering application 120 may
update the pointers to the buffers from the display list and may
rerun the pixel phase on the circle plus line objects. As the
display list may be used for subsequent pixel passes, the
vertex phase does not need to be rerun. Accordingly, the
vertex phase can be run a single time and the pixel phase can
be rerun to remove the various depth layers.

The second pass through the pixel phase may determine the
second layer (layer 1) 410 of the circle plus line objects. The
pixel phase may determine the next closest layer by using
parameters from the first layer 405 and removing pixels from
the first layer 405. The multiple pass rendering application
120 may remove the pixels from the first layer 405 to obtain
the next closest layer 410. The next closest layer may be the
second layer 410. The second phase pixel rendering pass may
be run to obtain a frame buffer for a second depth layer 410.

The third pass through the pixel phase may determine the
third and final layer (layer 2) 415. As the first and second
layers were removed during the first two passes, the closest
layer may be the third layer 415. The pixel phase may deter-
mine the next closest layer by using parameters from the
second layer 410 and removing pixels from the first layer 405
and second layer 410. The multiple pass rendering applica-
tion 120 may remove the pixels from the first layer 405 and
second layer 410 to obtain the next closest layer 415. A pixel
rendering pass may be run to obtain a frame buffer for a
farthest depth layer 415. The pixel rendering pass may deter-
mine that the farthest layer 415 has been reached by running
another pixel pass and determining that there are no further
depth layers. In an embodiment, when the final pixel pass is
run, the subsequent depth/render buffer may be the same as
the previous depth/render buffer. In an embodiment, when the
final pixel pass is run, there may be no pixels in the depth/
render buffer. In an embodiment, when the final pixel pass is
run, no further layer may exist as there may be no larger depth
value to replace the existing value in depth buffer and no
rendering pixels to be stored in render buffer.

FIG. 5 illustrates an embodiment of the parameters used in
the pixel phase. As shown in FIG. 5, the primitive data 520
and the texture buffer 525 may be inputs. The pixel shader
buffer 530 may provide the code to process the inputs. The
depth/render buffer may 535 provide the output.

For example, a first run 505 through the pixel phase may
use the primitive data 540 as input. The first run 505 through
the pixel phase may not have any texture data from the texture
buffer 525 as no comparison is needed with a previous layer.
During the first run 505 through the pixel phase, the pixel
shader buffer information 545 may process the primitive data
and the closest layer of pixels may be placed in the depth/
render buffer 550 as output.

Prior to the second run 510 of the pixel phase, the buffers
may be updated. The output data from the depth/render buffer
550 may be placed in the texture buffer 560. The pixel data
from the texture buffer 560 may then be used, along with the
primitive data 540, as input for the second run 510 of the pixel
phase. The second run 510 may use data from the pixel shader
buffer 565 to process the pixel data from the texture buffer
560 and the primitive data 540. In an embodiment, the pixel
shader buffer 585 may compare the primitive data 540 with
the pixel data from the texture buffer 560 to determine the
next layer. The result of the processing may be pixel data
which may be placed in the depth/render buffer 570.

10

15

20

25

30

35

40

45

50

55

60

65

8

Prior to the third run 515 of the pixel phase, the buffers may
be updated. The output data from the depth/render butfer 570
may be placed in the texture buffer 580. The pixel data from
the texture buffer 580 may be used, along with the primitive
data 540, as input for the third run 515 of the pixel phase. The
third run 515 may use data from the pixel shader butfer 585 to
process the pixel data from the texture buffer 580 and the
primitive data 540. In an embodiment, the pixel shader buffer
585 may compare the primitive data 540 with the pixel data
from the texture buffer 585 to determine the next layer. The
result of the processing may be pixel data which may be
placed in the depth/render buffer 590. As the pixel data in the
depth/render buffer 590 may be from the final or last layer of
the object, the depth peeling of the pixel phase may be com-
plete. The embodiments are not limited to this example.

FIG. 6 illustrates an embodiment of the communication
between the multiple pass rendering application and the
graphics driver. In an embodiment, the multiple pass render-
ing application 620 may receive a command to open the
application 625. In an embodiment, the command may be for
a scene setup. In an embodiment, one or more objects may be
rendered with a special effect for a scene.

After the multiple pass rendering application 620 receives
the command to open the application, the multiple pass ren-
dering application 620 may send information to the graphics
driver 610. For example, the information sent to the graphics
driver 610 may include vertex data to determine the three
dimensional primitives for one or more objects inascene. The
graphics driver 610 may generate one or more command
buffers and store pointers for a pixel phase 630. For example,
the graphics driver 610 may prepare the command buffer. For
example, the graphics driver 610 may record where the tex-
ture buffer, the pixel shader buffer and the depth/render buffer
are used in the command buffer. In an embodiment, the graph-
ics driver 610 may store pointers to the texture buffer, the
pixel shader buffer and the depth/render buffer.

The multiple pass rendering application 620 may begin the
vertex phase 635. The multiple pass rendering application
620 may send the information to the graphics driver 610 so
that the graphics driver 610 may begin the vertex phase to
determine a display list 640. The graphics driver 610 may stop
processing after the vertex phase is completed. In an embodi-
ment, the graphics driver 610 may wait for a command from
the multiple pass rendering application 620 prior to beginning
the pixel phase. In an embodiment, the graphics driver 610
may receive input from the multiple pass rendering applica-
tion 620 that is used in the pixel phase.

In an embodiment, the multiple pass rendering application
620 may setup the texture buffer, pixel shader buffer and
depth/render buffer 645. In an embodiment, a command may
be received to setup the command bufters. In an embodiment,
the buffers may be determined via user input into the multiple
pass rendering application 620. For example, after the vertex
phase, a user may determine a texture buffer to be used during
the pixel phase. For example, a user may determine a pixel
shader buffer to be used during the pixel phase. The embodi-
ments are not limited to this example.

Based on the setup by the multiple pass rendering applica-
tion 620, the graphics driver 610 may replace the pointers of
the texture buffer, the pixel shader buffer and/or the depth/
render buffer within the command buffer of the display list
650.

The multiple pass rendering application 620 may begin the
pixel phase 655 by communicating with the graphics driver
610 to run a pixel pass 660. After each pixel pass 660, the
pointers within the command buffer may be replaced 650.
The multiple pass rendering application 620 may determine

US 9,177,412 B2

9

whether it is the last pass 665. If the graphics driver 610 was
able to determine a new depth layer, then the graphics driver
610 may run another pixel pass 660.

When the pixel phase is finished and the last pass 665 has
run 660, then the multiple pass rendering application 620 may
command the graphics driver 610 to generate the final scene
using the results of the previous passes 675. The graphics
driver 610 may display the rendered results 680. The rendered
results 680 may include a scene with a three dimensional
object.

FIG. 7 illustrates a block diagram of a centralized system
700. The centralized system 700 may implement some or all
of the structure and/or operations for the system 100 in a
single computing entity, such as entirely within a single com-
puting device 720.

In an embodiment, the computing device 720 may be a
mobile device. A mobile device may include, without limita-
tion, a computer, server, workstation, notebook computer,
handheld computer, telephone, cellular telephone, personal
digital assistant (PDA), combination cellular telephone and
PDA, and so forth.

The computing device 720 may execute processing opera-
tions or logic for the system 100 using a processing compo-
nent 730. The processing component 730 may comprise vari-
ous hardware elements, software elements, or a combination
of’both. Examples of hardware elements may include devices,
components, processors, Microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, application specific inte-
grated circuits (ASIC), programmable logic devices (PLD),
digital signal processors (DSP), field programmable gate
array (FPGA), memory units, logic gates, registers, semicon-
ductor device, chips, microchips, chip sets, and so forth.
Examples of software elements may include software com-
ponents, programs, applications, computer programs, appli-
cation programs, system programs, machine programs, oper-
ating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces
(API), instruction sets, computing code, computer code, code
segments, computer code segments, words, values, symbols,
orany combination thereof. Determining whether an embodi-
ment is implemented using hardware elements and/or soft-
ware elements may vary in accordance with any number of
factors, such as desired computational rate, power levels, heat
tolerances, processing cycle budget, input data rates, output
data rates, memory resources, data bus speeds and other
design or performance constraints, as desired for a given
implementation.

The computing device 720 may execute communications
operations or logic for the system 100 using communications
component 740. The communications component 740 may
implement any well-known communications techniques and
protocols, such as techniques suitable for use with packet-
switched networks (e.g., public networks such as the Internet,
private networks such as an enterprise intranet, and so forth),
circuit-switched networks (e.g., the public switched tele-
phone network), or a combination of packet-switched net-
works and circuit-switched networks (with suitable gateways
and translators). The communications component 740 may
include various types of standard communication elements,
such as one or more communications interfaces, network
interfaces, network interface cards (NIC), radios, wireless
transmitters/receivers (transceivers), wired and/or wireless
communication media, physical connectors, and so forth. By
way of example, and not limitation, communication media
720 includes wired communications media and wireless com-

10

15

40

45

10

munications media. Examples of wired communications
media may include a wire, cable, metal leads, printed circuit
boards (PCB), backplanes, switch fabrics, semiconductor
material, twisted-pair wire, co-axial cable, fiber optics, a
propagated signal, and so forth. Examples of wireless com-
munications media may include acoustic, radio-frequency
(RF) spectrum, infrared and other wireless media 720.

The computing device 720 may communicate with other
devices 710, 730 over a communications media 715 using
communications signals 722 via the communications com-
ponent 740. In an embodiment, the computing device 720
may include, but is not limited to, smart phones, tablets,
laptops, etc.

In an embodiment, computing device 720 may comprise a
display 750. In one embodiment, the display 750 may com-
prise a liquid crystal display (LCD). In one embodiment, the
display 750 may comprise an organic light emitting diode
(OLED) display. In one embodiment, an OLED display may
be used as it provides better color saturation and viewing
angles then a liquid crystal display (LCD). In one embodi-
ment, the display 750 may comprise one or more OLED
display screens.

FIG. 8 illustrates an embodiment of an exemplary comput-
ing architecture 800 suitable for implementing various
embodiments as previously described. As used in this appli-
cation, the terms “system” and “component” are intended to
refer to a computer-related entity, either hardware, a combi-
nation of hardware and software, software, or software in
execution, examples of which are provided by the exemplary
computing architecture 800. For example, a component can
be, but is not limited to being, a process running on a proces-
sor, a processor, a hard disk drive, multiple storage drives (of
optical and/or magnetic storage medium), an object, an
executable, a thread of execution, a program, and/or a com-
puter. By way of illustration, both an application running on
a server and the server can be a component. One or more
components can reside within a process and/or thread of
execution, and a component can be localized on one computer
and/or distributed between two or more computers. Further,
components may be communicatively coupled to each other
by various types of communications media to coordinate
operations. The coordination may involve the uni-directional
or bi-directional exchange of information. For instance, the
components may communicate information in the form of
signals communicated over the communications media. The
information can be implemented as signals allocated to vari-
ous signal lines. In such allocations, each message is a signal.
Further embodiments, however, may alternatively employ
data messages. Such data messages may be sent across vari-
ous connections. Exemplary connections include parallel
interfaces, serial interfaces, and bus interfaces.

In one embodiment, the computing architecture 800 may
comprise or be implemented as part of an electronic device.
Examples of an electronic device may include without limi-
tation a mobile device, a personal digital assistant, a mobile
computing device, a smart phone, a cellular telephone, a
handset, a one-way pager, a two-way pager, a messaging
device, a computer, a personal computer (PC), a desktop
computer, a laptop computer, a notebook computer, a hand-
held computer, a tablet computer, a server, a server array or
server farm, a web server, a network server, an Internet server,
a work station, a mini-computer, a main frame computer, a
supercomputer, a network appliance, a web appliance, a dis-
tributed computing system, multiprocessor systems, proces-
sor-based systems, consumer electronics, programmable
consumer electronics, television, digital television, set top
box, wireless access point, base station, subscriber station,

US 9,177,412 B2

11

mobile subscriber center, radio network controller, router,
hub, gateway, bridge, switch, machine, or combination
thereof. The embodiments are not limited in this context.

The computing architecture 800 includes various common
computing elements, such as one or more processors, co-
processors, memory units, chipsets, controllers, peripherals,
interfaces, oscillators, timing devices, video cards, audio
cards, multimedia input/output (I/O) components, and so
forth. The embodiments, however, are not limited to imple-
mentation by the computing architecture 800.

As shown in FIG. 8, the computing architecture 800 com-
prises a processing unit 804, a system memory 806 and a
system bus 808. The processing unit 804 can be any of various
commercially available processors. Dual microprocessors
and other multi-processor architectures may also be
employed as the processing unit 804. The system bus 808
provides an interface for system components including, but
not limited to, the system memory 806 to the processing unit
804. The system bus 808 can be any of several types of bus
structure that may further interconnect to a memory bus (with
or without a memory controller), a peripheral bus, and a local
bus using any of a variety of commercially available bus
architectures.

The computing architecture 800 may comprise or imple-
ment various articles of manufacture. An article of manufac-
ture may comprise a computer-readable storage medium to
store logic. Embodiments of the invention may also be at least
partly implemented as instructions contained in or on a non-
transitory computer-readable medium, which may be read
and executed by one or more processors to enable perfor-
mance of the operations described herein. Examples of a
computer-readable storage medium may include any tangible
media capable of storing electronic data, including volatile
memory or non-volatile memory, removable or non-remov-
able memory, erasable or non-erasable memory, writeable or
re-writeable memory, and so forth. Examples of logic may
include executable computer program instructions imple-
mented using any suitable type of code, such as source code,
compiled code, interpreted code, executable code, static
code, dynamic code, object-oriented code, visual code, and
the like.

The system memory 806 may include various types of
computer-readable storage media in the form of one or more
higher speed memory units, such as read-only memory
(ROM), random-access memory (RAM), dynamic RAM
(DRAM), Double-Data-Rate DRAM (DDRAM), synchro-
nous DRAM (SDRAM), static RAM (SRAM), program-
mable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, polymer memory such as ferroelec-
tric polymer memory, ovonic memory, phase change or fer-
roelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, or any other
type of media suitable for storing information. In the illus-
trated embodiment shown in FIG. 8, the system memory 806
can include non-volatile memory 810 and/or volatile memory
812. A basic input/output system (BIOS) can be stored in the
non-volatile memory 810.

The computer 802 may include various types of computer-
readable storage media in the form of one or more lower speed
memory units, including an internal hard disk drive (HDD)
814, a magnetic floppy disk drive (FDD) 816 to read from or
write to a removable magnetic disk 818, and an optical disk
drive 820 to read from or write to a removable optical disk 822
(e.g., a CD-ROM or DVD). The HDD 814, FDD 816 and
optical disk drive 820 can be connected to the system bus 808
by a HDD interface 824, an FDD interface 826 and an optical

10

15

20

25

30

35

40

45

50

55

60

65

12

drive interface 828, respectively. The HDD interface 824 for
external drive implementations can include at least one or
both of Universal Serial Bus (USB) and IEEE 1394 interface
technologies.

The drives and associated computer-readable media pro-
vide volatile and/or nonvolatile storage of data, data struc-
tures, computer-executable instructions, and so forth. For
example, a number of program modules can be stored in the
drives and memory units 810, 812, including an operating
system 830, one or more application programs 832, other
program modules 834, and program data 836.

The one or more application programs 832, other program
modules 834, and program data 836 can include, for example,
the vertex phase 122 and the pixel phase 124.

A user can enter commands and information into the com-
puter 802 through one or more wire/wireless input devices,
for example, a keyboard 838 and a pointing device, such as a
mouse 840. Other input devices may include a microphone,
an infra-red (IR) remote control, a joystick, a game pad, a
stylus pen, touch screen, or the like. These and other input
devices are often connected to the processing unit 804
through an input device interface 842 that is coupled to the
system bus 808, but can be connected by other interfaces such
as a parallel port, IEEE 1394 serial port, a game port, a USB
port, an IR interface, and so forth.

A monitor 844 or other type of display device is also
connected to the system bus 808 via an interface, such as a
video adaptor 846. In addition to the monitor 844, a computer
typically includes other peripheral output devices, such as
speakers, printers, and so forth.

The computer 802 may operate in a networked environ-
ment using logical connections via wire and/or wireless com-
munications to one or more remote computers, such as a
remote computer 848. The remote computer 848 can be a
workstation, a server computer, a router, a personal computer,
portable computer, microprocessor-based entertainment
appliance, a peer device or other common network node, and
typically includes many or all of the elements described rela-
tive to the computer 802, although, for purposes of brevity,
only a memory/storage device 850 is illustrated. The logical
connections depicted include wire/wireless connectivity to a
local area network (LAN) 852 and/or larger networks, for
example, a wide area network (WAN) 854. Such LAN and
WAN networking environments are commonplace in offices
and companies, and facilitate enterprise-wide computer net-
works, such as intranets, all of which may connect to a global
communications network, for example, the Internet.

When used in a LAN networking environment, the com-
puter 802 is connected to the LAN 852 through a wire and/or
wireless communication network interface or adaptor 856.
The adaptor 856 can facilitate wire and/or wireless commu-
nications to the LAN 852, which may also include a wireless
access point disposed thereon for communicating with the
wireless functionality of the adaptor 856.

When used in a WAN networking environment, the com-
puter 802 can include a modem 858, or is connected to a
communications server on the WAN 854, or has other means
for establishing communications over the WAN 854, such as
by way of the Internet. The modem 858, which can be internal
or external and a wire and/or wireless device, connects to the
system bus 808 via the input device interface 842. In a net-
worked environment, program modules depicted relative to
the computer 802, or portions thereof, can be stored in the
remote memory/storage device 850. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers can be used.

US 9,177,412 B2

13

The computer 802 is operable to communicate with wire
and wireless devices or entities using the IEEE 802 family of
standards, such as wireless devices operatively disposed in
wireless communication (e.g., IEEE 802.11 over-the-air
modulation techniques) with, for example, a printer, scanner,
desktop and/or portable computer, personal digital assistant
(PDA), communications satellite, any piece of equipment or
location associated with a wirelessly detectable tag (e.g., a
kiosk, news stand, restroom), and telephone. This includes at
least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™
wireless technologies. Thus, the communication can be a
predefined structure as with a conventional network or simply
an ad hoc communication between at least two devices. Wi-Fi
networks use radio technologies called IEEE 802.11x (a, b, g,
n, etc.) to provide secure, reliable, fast wireless connectivity.
A Wi-Fi network can be used to connect computers to each
other, to the Internet, and to wire networks (which use IEEE
802.3-related media and functions).

FIG. 9 illustrates a block diagram of an exemplary com-
munications architecture 900 suitable for implementing vari-
ous embodiments as previously described. The communica-
tions architecture 900 includes various common
communications elements, such as a transmitter, receiver,
transceiver, radio, network interface, baseband processor,
antenna, amplifiers, filters, and so forth. The embodiments,
however, are not limited to implementation by the communi-
cations architecture 900.

As shown in FIG. 9, the communications architecture 900
comprises includes one or more clients 902 and servers 904.
The clients 902 may implement the client systems 320. The
clients 902 and the servers 904 are operatively connected to
one or more respective client data stores 908 and server data
stores 910 that can be employed to store information local to
the respective clients 902 and servers 904, such as cookies
and/or associated contextual information.

The clients 902 and the servers 904 may communicate
information between each other using a communication
framework 906. The communications framework 906 may
implement any well-known communications techniques and
protocols, such as those described with reference to system
300. The communications framework 906 may be imple-
mented as a packet-switched network (e.g., public networks
such as the Internet, private networks such as an enterprise
intranet, and so forth), a circuit-switched network (e.g., the
public switched telephone network), or a combination of a
packet-switched network and a circuit-switched network
(with suitable gateways and translators).

Some embodiments may be described using the expression
“one embodiment” or “an embodiment” along with their
derivatives. These terms mean that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are in
direct physical or electrical contact with each other. The term
“coupled,” however, may also mean that two or more ele-
ments are not in direct contact with each other, but yet still
co-operate or interact with each other.

It is emphasized that the Abstract of the Disclosure is
provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It is submitted with the understand-

10

15

20

25

30

35

40

45

50

55

60

65

14

ing that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed embodi-
ments require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive sub-
ject matter lies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo-
rated into the Detailed Description, with each claim standing
onits own as a separate embodiment. In the appended claims,
the terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising” and
“wherein,” respectively. Moreover, the terms “first,” “sec-
ond,” “third,” and so forth, are used merely as labels, and are
not intended to impose numerical requirements on their
objects.

What has been described above includes examples of the
disclosed architecture. It is, of course, not possible to describe
every conceivable combination of components and/or meth-
odologies, but one of ordinary skill in the art may recognize
that many further combinations and permutations are pos-
sible. Accordingly, the novel architecture is intended to
embrace all such alterations, modifications and variations that
fall within the spirit and scope of the appended claims.

The invention claimed is:

1. A non-transitory machine-readable storage medium
comprising instructions that when executed cause a system
to:

receive vertex data for one or more objects to be enhanced;

determine one or more parameters in a display list using the

vertex data during a single run of a vertex phase of a
three-dimensional (3D) pipeline;

run multiple pixel rendering passes through a pixel phase

of the 3D pipeline using the one or more parameters in
the display list; and

render an enhanced depiction of the one or more objects

based on the multiple pixel rendering passes.

2. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to:

receive buffer information for pixel rendering; and

update the one or more parameters in the display list based

on received buffer information prior to running multiple
pixel rendering passes.

3. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to run a pixel rendering pass a first time to obtain a
frame buffer for a closest depth layer.

4. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to run a pixel rendering pass a final time to obtain a
frame bufter for a farthest depth layer.

5. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to render the one or more objects with a special effect,
the special effect comprising one or more of transparency,
adaptive texture, adaptive skins and shadowing.

6. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to update one or more pointers in the display list after
a pixel rendering pass.

7. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to receive user input after determining the one or more
parameters in a display list.

US 9,177,412 B2

15

8. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to redefine the one or more parameters in the display
list based on received buffer information.

9. The non-transitory machine-readable storage medium of
claim 1, comprising instructions that when executed cause the
system to:

store a pointer in the display list to texture position infor-

mation in a texture buffer;

store a pointer in the display list to a closest depth in a frame

buffer; and
store a pointer in the display list to process information in
a pixel shader buffer.

10. A method comprising:

receiving, at a three-dimensional (3D) pipeline imple-
mented by a graphics processing unit (GPU), vertex data
for one or more objects to be enhanced, the 3D pipeline
divided into a vertex phase and a pixel phase;

determining a display list using the vertex data during a

single run of the vertex phase;

running multiple pixel rendering passes through the pixel

phase using the display list; and

rendering an enhanced depiction of the one or more objects

based on the multiple pixel rendering passes.

11. The method of claim 10, comprising:

running a pixel rendering pass through the pixel phase a

first time to obtain a frame buffer for a closest depth
layer.

12. The method of claim 10, comprising:

running a pixel rendering pass through the pixel phase a

final time to obtain a frame buffer for a farthest depth
layer.

13. The method of claim 10, comprising:

rendering the one or more objects with a special effect, the

special effect comprising one or more of transparency,
adaptive texture, adaptive skins or shadowing.

14. The method of claim 10, comprising:

updating pointers in the display list after a run of a pixel

rendering pass through the pixel phase.

15. The method of claim 10, comprising:

storing a pointer in the display list to a closest depth in a

frame buffer.

16. The method of claim 10, comprising:

storing a pointer in the display list to process information in

a pixel shader buffer.

17. The method of claim 10, comprising:

receiving user input for the display list.

18. The method of claim 10, comprising:

redefining one or more parameters in the display list prior

to running the multiple pixel rendering passes through
the pixel phase.

19. The method of claim 10, comprising:

storing a pointer in the display list to texture position infor-

mation in a texture buffer.

5

10

15

20

25

30

35

40

45

50

16

20. An apparatus, comprising:

a graphics processing unit (GPU) to implement a three-
dimensional (3D) pipeline, the 3D pipeline to comprise
a vertex phase and a pixel phase; and

a graphics driver operative on the GPU to receive vertex
data based on one or more objects, determine a display
list from the vertex data during a single run of the vertex
phase, and run multiple pixel rendering passes through
the pixel phase using the display list.

21. The apparatus of claim 20, the graphics driver operative

to:

render an enhanced depiction of the one or more objects
based on the multiple pixel rendering passes.

22. The apparatus of claim 20, the display list comprising:

primitive data based on the vertex data, and

a command buffer.

23. The apparatus of claim 20, the display list comprising:

a command buffer with a pointer to a texture buffer, a
pointer to a pixel shader buffer, and a pointer to a frame
buffer.

24. The apparatus of claim 20, comprising:

a digital display communicatively coupled to the graphic
processing unit, the digital display operative to present
an enhanced depiction of the one or more objects based
on the multiple pixel rendering passes.

25. A system, comprising:

a processing unit to implement a three-dimensional (3D)
pipeline, the 3D pipeline to comprise a vertex phase and
a pixel phase;

a memory unit communicatively coupled to the processing
unit to store a graphics driver for execution by the pro-
cessing unit; and

an operating system for execution by the processing unit to
load the graphics driver on the processing unit from the
memory unit, the graphics driver to comprise instruc-
tions that when executed cause the processing unit to:
receive vertex data based on one or more objects, deter-

mine a display list from the vertex data during a single
run of the vertex phase, and run multiple pixel render-
ing passes through the pixel phase using the display
list.

26. The system of claim 25, the graphics driver to comprise
instructions that when executed cause the processing unit to
render an enhanced depiction of the one or more objects based
on the multiple pixel rendering passes.

27. The system of claim 25, the graphics driver to comprise
instructions that when executed cause the processing unit to
run a pixel rendering pass through the pixel phase a first time
to obtain a frame buffer for a closest depth layer.

28. The system of claim 25, the graphics driver to comprise
instructions that when executed cause the processing unit to
run a pixel rendering pass through the pixel phase a final time
to obtain a frame bufter for a farthest depth layer.

#* #* #* #* #*

